Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Pharmacol ; 76(1): 64-73, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-37992247

RESUMO

OBJECTIVES: Diabetic cardiomyopathy is a known complication of diabetes mellitus. Herein, we aimed to determine whether glycemic control mediated by sitagliptin, a dipeptidyl peptidase-4 inhibitor, can ameliorate diabetic myocardial abnormalities by modulating TGF-ß signaling via the SMAD and integrin-linked kinase (ILK) pathways. METHODS: Four groups of male Wistar albino rats were used, with six rats in each group. Two nondiabetic and two diabetic (produced by a single intraperitoneal dose of streptozotocin (55 mg/kg)) groups were administered either normal saline or sitagliptin (100 mg/kg) orally for 6 weeks. Subsequently, HW/BW ratios and cardiac enzymes were assessed, along with a histological examination of cardiac tissues. Levels of TGF-ß, collagen I, p-SMAD2/3, TNF-α, MMP-9, and ILK were detected. RESULTS: Compared with the diabetic control group, sitagliptin-treated diabetic rats exhibited considerably reduced HW/BW ratios and troponin I and creatine kinase-MB levels, with improvements in histopathological changes in cardiac tissues. TGF-ß, collagen I, p-SMAD2/3, TNF-α, and MMP-9 levels were significantly decreased in the sitagliptin-treated diabetic group, whereas ILK was elevated following sitagliptin treatment. CONCLUSION: Sitagliptin could afford cardioprotective effects for the first time by altering ILK-associated TGF-ß/SMAD signaling pathways. Thus, sitagliptin may be a promising therapeutic target for the prevention of diabetic cardiomyopathy.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Ratos , Masculino , Animais , Fosfato de Sitagliptina/farmacologia , Fosfato de Sitagliptina/uso terapêutico , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/prevenção & controle , Metaloproteinase 9 da Matriz , Fator de Crescimento Transformador beta , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Ratos Wistar , Fator de Necrose Tumoral alfa , Colágeno
2.
BMC Cardiovasc Disord ; 23(1): 153, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36964489

RESUMO

BACKGROUND: Myocardial infarction (MI) is considered a public health problem. According to the World Health Organization, MI is a leading cause of death and comorbidities worldwide. Activation of the α1A adrenergic receptor is a contributing factor to the development of MI. Tamsulosin, an α1A adrenergic blocker, has gained wide popularity as a medication for the treatment of benign prostatic hyperplasia. Limited evidence from previous studies has revealed the potential cardioprotective effects of tamsulosin, as its inhibitory effect on the α1A adrenoceptor protects the heart by acting on the smooth muscle of blood vessels, which results in hypotension; however, its effect on the infarcted heart is still unclear. The mechanisms of the expected cardioprotective effects mediated by tamsulosin are not yet understood. Transforming growth factor-beta (TGF-ß), a mediator of fibrosis, is considered an attractive therapeutic target for remodeling after MI. The role of α1A adrenoceptor inhibition or its relationships with integrin-linked kinase (ILK) and TGF-ß/small mothers against decapentaplegic (Smad) signaling pathways in attenuating MI are unclear. The present study was designed to investigate whether tamsulosin attenuates MI by modulating an ILK-related TGF-ß/Smad pathway. METHODS: Twenty-four adult male Wistar rats were randomly divided into 4 groups: control, ISO, TAM, and ISO + TAM. ISO (150 mg/kg, intraperitoneally) was injected on Days 20 and 21 to induce MI. Tamsulosin (0.8 mg/kg, orally) was administered for 21 days, prior to ISO injection for 2 consecutive days. Heart-to-body weight ratios and cardiac and fibrotic biomarker levels were subsequently determined. ILK, TGF-ß1, p-Smad2/3, and collagen III protein expression levels were determined using biomolecular methods. RESULTS: Tamsulosin significantly attenuated the relative heart-to-body weight index (p < 0.5) and creatine kinase-MB level (p < 0.01) compared with those in the ISO control group. While ISO resulted in superoxide anion production and enhanced oxidative damage, tamsulosin significantly prevented this damage through antioxidant defense mechanisms, increasing glutathione and superoxide dismutase levels (p < 0.05) and decreasing lipid peroxide oxidation levels (p < 0.01). The present data revealed that tamsulosin reduced TGF-ß/p-Smad2/3 expression and enhanced ILK expression. CONCLUSION: Tamsulosin may exert a cardioprotective effect by modulating the ILK-related TGF-ß/Smad signaling pathway. Thus, tamsulosin may be a useful therapeutic approach for preventing MI.


Assuntos
Infarto do Miocárdio , Ratos , Animais , Masculino , Tansulosina/metabolismo , Tansulosina/uso terapêutico , Ratos Sprague-Dawley , Ratos Wistar , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/prevenção & controle , Infarto do Miocárdio/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/uso terapêutico , Transdução de Sinais , Peso Corporal , Miocárdio/patologia , Fibrose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...